Week 6 - Friday

- What did we talk about last time?
- Recurrence relations

Questions?

Assignment 3

Logical warmup

- A man offers you a bet
- He shows you three cards
 - One is red on both sides
 - One is green on both sides
 - One is red on one side and green on the other

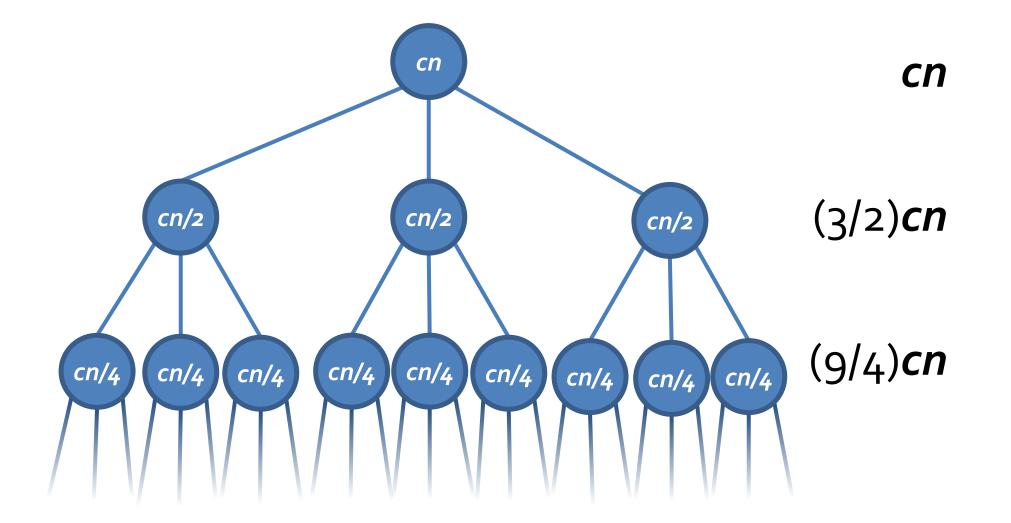
- He will put one of the cards, at random, on the table, with a random side up
- If you can guess the color on the other side, you win
- If you bet \$100
 - You gain \$60 on a win
 - You lose your \$100 on a loss
- Should you take the bet? Why or why not?

Further Recurrence Relations

Further recurrence relations

- We have seen that recurrence relations of the form $T(n) \le 2T\left(\frac{n}{2}\right) + cn$ are bounded by O($n \log n$)
- What about $T(n) \le qT\left(\frac{n}{2}\right) + cn$ where **q** is bigger than 2 (more than two sub-problems)?
- There will still be log₂n levels of recursion
- However, there will not be a consistent *cn* amount of work at each level

Consider q = 3



Converting to summation

• For
$$\boldsymbol{q} = 3$$
, it's $T(n) \le \sum_{j=0}^{\log_2 n-1} \left(\frac{3}{2}\right)^j cn$

In general, it's

$$T(n) \leq \sum_{j=0}^{\log_2 n-1} \left(\frac{q}{2}\right)^j cn = cn \sum_{j=0}^{\log_2 n-1} \left(\frac{q}{2}\right)^j$$

This is a geometric series, where $r = \frac{q}{2}$

$$T(n) \leq cn \left(\frac{r^{\log_2 n} - 1}{r-1}\right) \leq cn \left(\frac{r^{\log_2 n}}{r-1}\right)$$

Final bound

$$T(n) \leq cn\left(\frac{r^{\log_2 n} - 1}{r - 1}\right) \leq cn\left(\frac{r^{\log_2 n}}{r - 1}\right)$$

• Since r - 1 is a constant, we can pull it out
• $T(n) \leq \left(\frac{c}{r-1}\right)nr^{\log_2 n}$
• For $a > 1$ and $b > 1$, $a^{\log b} = b^{\log a}$, thus $r^{\log_2 n} = n^{\log_2 r} = n^{\log_2 (q/2)} = n^{(\log_2 q) - 1}$
• $T(n) \leq \left(\frac{c}{r-1}\right)n \cdot n^{(\log_2 q) - 1} \leq \left(\frac{c}{r-1}\right)n^{\log_2 q}$ which is $O(n^{\log_2 q})$

What about a single sub-problem?

- We will still have $\log_2 n 1$ levels
- However, we'll cut our work in half each time

$$T(n) \le T\left(\frac{n}{2}\right) + cn \le \sum_{j=0}^{\log_2 n-1} \left(\frac{1}{2}\right)^j cn = cn \sum_{j=0}^{\log_2 n-1} \frac{1}{2^j}$$

- Summing all the way to infinity, $1 + \frac{1}{2} + \frac{1}{4} + \cdots = 2$
- Thus, $T(n) \leq 2cn$ which is O(n)

What might that look like in code?

Here's a non-recursive version in Java

```
int counter = 0;
for( int i = 1; i <= n; i *= 2 )
    for( int j = 1; j <= i; j++ )
        counter++;</pre>
```

 We've just shown that this is O(n), in spite of the two for loops

Three-Sentence Summary of Counting Inversions

Counting Inversions

Rankings

- Let's say that you like the following 2024 Oscar nominees in this order:
 - 1. American Fiction
 - 2. Barbie
 - 3. Oppenheimer
 - 4. Poor Things

The correct ordering is:

- **1**. Barbie
- 2. PoorThings
- 3. Oppenheimer
- 4. American Fiction

Ranking similarity

- What if we wanted to measure the similarity of your ranking to the given ranking?
- Inversions are pairs of elements that are out of order in one ranking with respect to the other
- Formally, for indices *i* < *j*, there's an inversion if ranking *r_i* > *r_j*

Minimum and maximum inversions

If two rankings are the same, they would have no inversions
 If two rankings were sorted in opposite directions, they would have *n* - 1 inversions for the first element, *n* - 2 inversions for the second element, *n* - 3 inversions for the third ...

$$\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

Visualization of inversions

 You can visualize inversions as the number of line segments crossings if you match up items in one list with the other

- 1. American Fiction
- 2. Barbie
- 3. Oppenheimer
- 4. PoorThings

- 1. Barbie
- 2. Poor Things
- 3. Oppenheimer
 - American Fiction

A total of 4 inversions

Getting the counting right

- Since we're dealing with two different orders, it's sometimes hard to understand what we're supposed to be counting
- 1. American Fiction Other rank: 4
- 2. Barbie Othe
- *3. Oppenheimer*

- Other rank: 1 Other rank: 3 Other rank: 2
- 4. Poor Things Other rank:
- American Fiction contributes 3 (because 4 is bigger than 1, 3, and 2)
- Barbie contributes o
- Oppenheimer contributes 1 (because 3 is bigger than 2)
- The last one always contributes nothing

- Consider the following items whose rankings from another list are given

 - 6

 - 7
 - 0
- 5Count the inversions

Why do we care?

- The process of collaborative filtering tries to match preferences of different people on the Internet
- If your preferences are similar to someone else's, Netflix can recommend shows that they liked
- Counting inversions is just one way to measure similarity between preferences

Algorithm design

 Given a list of rankings, it's easy to count how many rankings are out of order with respect to the rankings that come after them

```
int inversions = 0;
for (int i = 0; i < n - 1; ++i)
    for (int j = i + 1; j < n; ++j)
        if( rankings[i] > rankings[j] )
        ++inversions;
```

- What's the problem with this algorithm?
- It's O(n²)

Can we do better?

- Of course!
- We can borrow from the Mergesort algorithm
- Divide the problem in half
- Then, we will get the number of inversions in the first half and in the second half
- Are we done?
 - No, we also have to count the inversions between the first half and the second half
 - Those are exactly those elements in the first half that are bigger than elements from the second half
 - We can find those during the merge process

Merge-and-Count(A, B)

- Maintain a *Current* pointer into each list, initialized to point to the front elements
- Set *Count* = 0
- While both lists have elements
 - Let a_i and b_i be the elements pointed to by the Current pointer
 - Append the smaller one to the output list
 - If b_i is smaller then
 - Increment Count by the number of elements left in A
 - Advance the Current pointer in the list that had the smaller element

Sort-and-Count(L)

- If the list has one element then
 - Return o inversions and the list L

Else

- Divide the list into two halves:
 - **A** has the first $\left[\frac{n}{2}\right]$ elements
 - **B** has the remaining $\left|\frac{n}{2}\right|$ elements
- (inversions_A, A) = Sort-and-Count(A)
- (inversions_B, B) = Sort-and-Count(B)
- (inversions, L) = Merge-and-Count(A, B)
- Return *inversions* + *inversions*_A + *inversions*_B and sorted list L

Running time

- Since Merge-and-Count is bounded by O(n), the running time for Sort-and-Count is clearly:
 - $T(1) \leq c$

•
$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$
, for $n \ge 2$

By the same analysis as for Mergesort, T(n) is O(n log n)

Upcoming

Closest pair of points

Reminders

- Assignment 3 is due tonight by midnight
- Read section 5.4
- Extra credit opportunities (0.5% each):
 - Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 - Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139