
Week 6 - Friday



 What did we talk about last time?
 Recurrence relations







 A man offers you a bet
 He shows you three cards

 One is red on both sides
 One is green on both sides
 One is red on one side and green on the other

 He will put one of the cards, at random, on the table, with a random side up
 If you can guess the color on the other side, you win
 If you bet $100

 You gain $60 on a win
 You lose your $100 on a loss

 Should you take the bet?  Why or why not?





 We have seen that recurrence relations of the form  𝑇𝑇 𝑛𝑛 ≤
2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑐𝑐 are bounded by O(n log n)

 What about 𝑇𝑇 𝑛𝑛 ≤ 𝑞𝑞𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐 where q is bigger than 2 
(more than two sub-problems)?

 There will still be log2n levels of recursion
 However, there will not be a consistent cn amount of work at 

each level
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 For q = 3, it's 𝑇𝑇 𝑛𝑛 ≤ ∑𝑗𝑗=0
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 In general, it's
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 This is a geometric series, where 𝑟𝑟 = 𝑞𝑞
2
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 Since r – 1 is a constant, we can pull it out

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
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 For 𝑎𝑎 > 1 and 𝑏𝑏 > 1, 𝑎𝑎log 𝑏𝑏 = 𝑏𝑏log 𝑎𝑎, thus 𝑟𝑟log2 𝑛𝑛 = 𝑛𝑛log2 𝑟𝑟 =
𝑛𝑛log2(𝑞𝑞/2) = 𝑛𝑛(log2 𝑞𝑞)−1
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 We will still have log2 n – 1 levels
 However, we'll cut our work in half each time
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 Summing all the way to infinity, 1 + 1
2

+ 1
4

+ ⋯ = 2
 Thus, 𝑇𝑇 𝑛𝑛 ≤ 2𝑐𝑐𝑐𝑐 which is 𝑂𝑂(𝑛𝑛)



 Here's a non-recursive version in Java

 We've just shown that this is O(n), in spite of the two for
loops

int counter = 0;
for( int i = 1; i <= n; i *= 2 )

for( int j = 1; j <= i; j++ )
counter++;







 Let's say that you like the 
following 2024 Oscar 
nominees in this order:

1. American Fiction
2. Barbie
3. Oppenheimer
4. Poor Things

 The correct ordering is:
1. Barbie
2. Poor Things
3. Oppenheimer
4. American Fiction



 What if we wanted to measure the similarity of your ranking 
to the given ranking?

 Inversions are pairs of elements that are out of order in one 
ranking with respect to the other

 Formally, for indices i < j, there's an inversion if ranking ri > rj



 If two rankings are the same, they would have no inversions
 If two rankings were sorted in opposite directions, they would 

have n – 1 inversions for the first element, n – 2 inversions for 
the second element, n – 3 inversions for the third …
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 You can visualize inversions as the number of line segments 
crossings if you match up items in one list with the other

 A total of 4 inversions

1. American Fiction
2. Barbie
3. Oppenheimer
4. Poor Things

1. Barbie
2. Poor Things
3. Oppenheimer
4. American Fiction



 Since we're dealing with two different orders, it's sometimes hard 
to understand what we're supposed to be counting

1. American Fiction Other rank: 4
2. Barbie Other rank: 1
3. Oppenheimer Other rank: 3
4. Poor Things Other rank: 2

 American Fiction contributes 3 (because 4 is bigger than 1, 3, and 2)
 Barbie contributes 0
 Oppenheimer contributes 1 (because 3 is bigger than 2)
 The last one always contributes nothing



 Consider the following items whose rankings from another list are given
 9
 4
 2
 6
 1
 8
 7
 10
 3
 5

 Count the inversions



 The process of collaborative filtering tries to match 
preferences of different people on the Internet

 If your preferences are similar to someone else's, Netflix can 
recommend shows that they liked

 Counting inversions is just one way to measure similarity 
between preferences



 Given a list of rankings, it's easy to count how many rankings are 
out of order with respect to the rankings that come after them

 What's the problem with this algorithm?
 It's O(n2)

int inversions = 0;
for (int i = 0; i < n - 1; ++i)

for (int j = i + 1; j < n; ++j)
if( rankings[i] > rankings[j] )

++inversions;



 Of course!
 We can borrow from the Mergesort algorithm
 Divide the problem in half
 Then, we will get the number of inversions in the first half and in 

the second half
 Are we done?
 No, we also have to count the inversions between the first half and the 

second half
 Those are exactly those elements in the first half that are bigger than 

elements from the second half
 We can find those during the merge process



 Maintain a Current pointer into each list, initialized to point to 
the front elements

 Set Count = 0
 While both lists have elements
 Let ai and bj be the elements pointed to by the Current pointer
 Append the smaller one to the output list
 If bj is smaller then
▪ Increment Count by the number of elements left in A

 Advance the Current pointer in the list that had the smaller element



 If the list has one element then
 Return 0 inversions and the list L

 Else
 Divide the list into two halves:
▪ A has the first 𝑛𝑛

2
elements

▪ B has the remaining 𝑛𝑛
2

elements

 (inversionsA, A) = Sort-and-Count(A)
 (inversionsB, B) = Sort-and-Count(B)
 (inversions, L) = Merge-and-Count(A, B)
 Return inversions + inversionsA + inversionsB and sorted list L



 Since Merge-and-Count is bounded by O(n), the running time 
for Sort-and-Count is clearly:
 𝑇𝑇(1) ≤ 𝑐𝑐

 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐, for 𝑛𝑛 ≥ 2
 By the same analysis as for Mergesort, T(n) is O(n log n)





 Closest pair of points



 Assignment 3 is due tonight by midnight
 Read section 5.4
 Extra credit opportunities (0.5% each):
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139
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