
Week 6 - Friday

 What did we talk about last time?
 Recurrence relations

 A man offers you a bet
 He shows you three cards

 One is red on both sides
 One is green on both sides
 One is red on one side and green on the other

 He will put one of the cards, at random, on the table, with a random side up
 If you can guess the color on the other side, you win
 If you bet $100

 You gain $60 on a win
 You lose your $100 on a loss

 Should you take the bet? Why or why not?

 We have seen that recurrence relations of the form 𝑇𝑇 𝑛𝑛 ≤
2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑐𝑐 are bounded by O(n log n)

 What about 𝑇𝑇 𝑛𝑛 ≤ 𝑞𝑞𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐 where q is bigger than 2
(more than two sub-problems)?

 There will still be log2n levels of recursion
 However, there will not be a consistent cn amount of work at

each level

cn

(3/2)cn

(9/4)cn

cn

cn/2 cn/2

cn/4 cn/4cn/4 cn/4

cn/2

cn/4cn/4cn/4 cn/4 cn/4

 For q = 3, it's 𝑇𝑇 𝑛𝑛 ≤ ∑𝑗𝑗=0
log2 𝑛𝑛−1 3

2

𝑗𝑗
𝑐𝑐𝑐𝑐

 In general, it's

𝑇𝑇 𝑛𝑛 ≤ �
𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗
𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐 �

𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗

 This is a geometric series, where 𝑟𝑟 = 𝑞𝑞
2

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑐𝑐
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1
 Since r – 1 is a constant, we can pull it out

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛𝑟𝑟log2 𝑛𝑛

 For 𝑎𝑎 > 1 and 𝑏𝑏 > 1, 𝑎𝑎log 𝑏𝑏 = 𝑏𝑏log 𝑎𝑎, thus 𝑟𝑟log2 𝑛𝑛 = 𝑛𝑛log2 𝑟𝑟 =
𝑛𝑛log2(𝑞𝑞/2) = 𝑛𝑛(log2 𝑞𝑞)−1

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛 � 𝑛𝑛(log2 𝑞𝑞)−1 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛log2 𝑞𝑞 which is
𝑂𝑂 𝑛𝑛log2 𝑞𝑞

 We will still have log2 n – 1 levels
 However, we'll cut our work in half each time

𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐 ≤ �
𝑗𝑗=0

log2 𝑛𝑛−1 1
2

𝑗𝑗

𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐 �
𝑗𝑗=0

log2 𝑛𝑛−1 1
2𝑗𝑗

 Summing all the way to infinity, 1 + 1
2

+ 1
4

+ ⋯ = 2
 Thus, 𝑇𝑇 𝑛𝑛 ≤ 2𝑐𝑐𝑐𝑐 which is 𝑂𝑂(𝑛𝑛)

 Here's a non-recursive version in Java

 We've just shown that this is O(n), in spite of the two for
loops

int counter = 0;
for(int i = 1; i <= n; i *= 2)

for(int j = 1; j <= i; j++)
counter++;

 Let's say that you like the
following 2024 Oscar
nominees in this order:

1. American Fiction
2. Barbie
3. Oppenheimer
4. Poor Things

 The correct ordering is:
1. Barbie
2. Poor Things
3. Oppenheimer
4. American Fiction

 What if we wanted to measure the similarity of your ranking
to the given ranking?

 Inversions are pairs of elements that are out of order in one
ranking with respect to the other

 Formally, for indices i < j, there's an inversion if ranking ri > rj

 If two rankings are the same, they would have no inversions
 If two rankings were sorted in opposite directions, they would

have n – 1 inversions for the first element, n – 2 inversions for
the second element, n – 3 inversions for the third …

�
𝑖𝑖=1

𝑛𝑛−1

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 − 1)

2

 You can visualize inversions as the number of line segments
crossings if you match up items in one list with the other

 A total of 4 inversions

1. American Fiction
2. Barbie
3. Oppenheimer
4. Poor Things

1. Barbie
2. Poor Things
3. Oppenheimer
4. American Fiction

 Since we're dealing with two different orders, it's sometimes hard
to understand what we're supposed to be counting

1. American Fiction Other rank: 4
2. Barbie Other rank: 1
3. Oppenheimer Other rank: 3
4. Poor Things Other rank: 2

 American Fiction contributes 3 (because 4 is bigger than 1, 3, and 2)
 Barbie contributes 0
 Oppenheimer contributes 1 (because 3 is bigger than 2)
 The last one always contributes nothing

 Consider the following items whose rankings from another list are given
 9
 4
 2
 6
 1
 8
 7
 10
 3
 5

 Count the inversions

 The process of collaborative filtering tries to match
preferences of different people on the Internet

 If your preferences are similar to someone else's, Netflix can
recommend shows that they liked

 Counting inversions is just one way to measure similarity
between preferences

 Given a list of rankings, it's easy to count how many rankings are
out of order with respect to the rankings that come after them

 What's the problem with this algorithm?
 It's O(n2)

int inversions = 0;
for (int i = 0; i < n - 1; ++i)

for (int j = i + 1; j < n; ++j)
if(rankings[i] > rankings[j])

++inversions;

 Of course!
 We can borrow from the Mergesort algorithm
 Divide the problem in half
 Then, we will get the number of inversions in the first half and in

the second half
 Are we done?
 No, we also have to count the inversions between the first half and the

second half
 Those are exactly those elements in the first half that are bigger than

elements from the second half
 We can find those during the merge process

 Maintain a Current pointer into each list, initialized to point to
the front elements

 Set Count = 0
 While both lists have elements
 Let ai and bj be the elements pointed to by the Current pointer
 Append the smaller one to the output list
 If bj is smaller then
▪ Increment Count by the number of elements left in A

 Advance the Current pointer in the list that had the smaller element

 If the list has one element then
 Return 0 inversions and the list L

 Else
 Divide the list into two halves:
▪ A has the first 𝑛𝑛

2
elements

▪ B has the remaining 𝑛𝑛
2

elements

 (inversionsA, A) = Sort-and-Count(A)
 (inversionsB, B) = Sort-and-Count(B)
 (inversions, L) = Merge-and-Count(A, B)
 Return inversions + inversionsA + inversionsB and sorted list L

 Since Merge-and-Count is bounded by O(n), the running time
for Sort-and-Count is clearly:
 𝑇𝑇(1) ≤ 𝑐𝑐

 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐, for 𝑛𝑛 ≥ 2
 By the same analysis as for Mergesort, T(n) is O(n log n)

 Closest pair of points

 Assignment 3 is due tonight by midnight
 Read section 5.4
 Extra credit opportunities (0.5% each):
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139

	COMP 4500
	Last time
	Questions?
	Assignment 3
	Logical warmup
	Further Recurrence Relations
	Further recurrence relations
	Consider q = 3
	Converting to summation
	Final bound
	What about a single sub-problem?
	What might that look like in code?
	Three-Sentence Summary of Counting Inversions
	Counting Inversions
	Rankings
	Ranking similarity
	Minimum and maximum inversions
	Visualization of inversions
	Getting the counting right
	Example
	Why do we care?
	Algorithm design
	Can we do better?
	Merge-and-Count(A, B)
	Sort-and-Count(L)
	Running time
	Upcoming
	Next time…
	Reminders

