
Week 6 - Friday



 What did we talk about last time?
 Recurrence relations







 A man offers you a bet
 He shows you three cards

 One is red on both sides
 One is green on both sides
 One is red on one side and green on the other

 He will put one of the cards, at random, on the table, with a random side up
 If you can guess the color on the other side, you win
 If you bet $100

 You gain $60 on a win
 You lose your $100 on a loss

 Should you take the bet?  Why or why not?





 We have seen that recurrence relations of the form  𝑇𝑇 𝑛𝑛 ≤
2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑛𝑛 are bounded by O(n log n)

 What about 𝑇𝑇 𝑛𝑛 ≤ 𝑞𝑞𝑇𝑇 𝑛𝑛
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+ 𝑐𝑐𝑛𝑛 where q is bigger than 2 
(more than two sub-problems)?

 There will still be log2n levels of recursion
 However, there will not be a consistent cn amount of work at 

each level
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 Since r – 1 is a constant, we can pull it out
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 For 𝑎𝑎 > 1 and 𝑏𝑏 > 1, 𝑎𝑎log 𝑏𝑏 = 𝑏𝑏log 𝑎𝑎, thus 𝑟𝑟log2 𝑛𝑛 = 𝑛𝑛log2 𝑟𝑟 =
𝑛𝑛log2(𝑞𝑞/2) = 𝑛𝑛(log2 𝑞𝑞)−1
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 We will still have log2 n – 1 levels
 However, we'll cut our work in half each time
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+ ⋯ = 2
 Thus, 𝑇𝑇 𝑛𝑛 ≤ 2𝑐𝑐𝑛𝑛 which is 𝑂𝑂(𝑛𝑛)



 Here's a non-recursive version in Java

 We've just shown that this is O(n), in spite of the two for
loops

int counter = 0;
for( int i = 1; i <= n; i *= 2 )

for( int j = 1; j <= i; j++ )
counter++;







 Let's say that you like the 
following 2024 Oscar 
nominees in this order:

1. American Fiction
2. Barbie
3. Oppenheimer
4. Poor Things

 The correct ordering is:
1. Barbie
2. Poor Things
3. Oppenheimer
4. American Fiction



 What if we wanted to measure the similarity of your ranking 
to the given ranking?

 Inversions are pairs of elements that are out of order in one 
ranking with respect to the other

 Formally, for indices i < j, there's an inversion if ranking ri > rj



 If two rankings are the same, they would have no inversions
 If two rankings were sorted in opposite directions, they would 

have n – 1 inversions for the first element, n – 2 inversions for 
the second element, n – 3 inversions for the third …
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 You can visualize inversions as the number of line segments 
crossings if you match up items in one list with the other

 A total of 4 inversions

1. American Fiction
2. Barbie
3. Oppenheimer
4. Poor Things

1. Barbie
2. Poor Things
3. Oppenheimer
4. American Fiction



 Since we're dealing with two different orders, it's sometimes hard 
to understand what we're supposed to be counting

1. American Fiction Other rank: 4
2. Barbie Other rank: 1
3. Oppenheimer Other rank: 3
4. Poor Things Other rank: 2

 American Fiction contributes 3 (because 4 is bigger than 1, 3, and 2)
 Barbie contributes 0
 Oppenheimer contributes 1 (because 3 is bigger than 2)
 The last one always contributes nothing



 Consider the following items whose rankings from another list are given
 9
 4
 2
 6
 1
 8
 7
 10
 3
 5

 Count the inversions



 The process of collaborative filtering tries to match 
preferences of different people on the Internet

 If your preferences are similar to someone else's, Netflix can 
recommend shows that they liked

 Counting inversions is just one way to measure similarity 
between preferences



 Given a list of rankings, it's easy to count how many rankings are 
out of order with respect to the rankings that come after them

 What's the problem with this algorithm?
 It's O(n2)

int inversions = 0;
for (int i = 0; i < n - 1; ++i)

for (int j = i + 1; j < n; ++j)
if( rankings[i] > rankings[j] )

++inversions;



 Of course!
 We can borrow from the Mergesort algorithm
 Divide the problem in half
 Then, we will get the number of inversions in the first half and in 

the second half
 Are we done?
 No, we also have to count the inversions between the first half and the 

second half
 Those are exactly those elements in the first half that are bigger than 

elements from the second half
 We can find those during the merge process



 Maintain a Current pointer into each list, initialized to point to 
the front elements

 Set Count = 0
 While both lists have elements
 Let ai and bj be the elements pointed to by the Current pointer
 Append the smaller one to the output list
 If bj is smaller then
▪ Increment Count by the number of elements left in A

 Advance the Current pointer in the list that had the smaller element



 If the list has one element then
 Return 0 inversions and the list L

 Else
 Divide the list into two halves:
▪ A has the first 𝑛𝑛

2
elements

▪ B has the remaining 𝑛𝑛
2

elements

 (inversionsA, A) = Sort-and-Count(A)
 (inversionsB, B) = Sort-and-Count(B)
 (inversions, L) = Merge-and-Count(A, B)
 Return inversions + inversionsA + inversionsB and sorted list L



 Since Merge-and-Count is bounded by O(n), the running time 
for Sort-and-Count is clearly:
 𝑇𝑇(1) ≤ 𝑐𝑐

 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛, for 𝑛𝑛 ≥ 2
 By the same analysis as for Mergesort, T(n) is O(n log n)





 Closest pair of points



 Assignment 3 is due tonight by midnight
 Read section 5.4
 Extra credit opportunities (0.5% each):
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139
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